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The problem of the hydrodynamic stability of rarefied suspensions was formulated first in [1]. A two- 
phase medium consisting of a carrier fluid (gas) and dispersed solid particles suspended in it was considered. 
The following was assumed: the particles are influenced by a drag force proportional to the velocity; their 
volume concentration is small; and their distribution in the flow is uniform. Under these conditions, as was 
shown in [1], the stability problem amounts to solving the Orr-Sommerfeld equation with an effective complex 
velocity profile, and the Squire theorem is valid. Qualitative analysis in [1] indicates that fine dispersed particles 
suspended in a fluid destabilize its flow, whereas coarse ones stabilize it. 

Systematic studies of two-phase Poiseuille flow stability conducted in [2-4] essentially augmented these 
findings. It was established that the value of stabilization was a monotone function of the dispersed-phase 
mass concentration. If the latter is high enough, then in a wide range of flow velocities infinitesimally small 
two-dimensional disturbances can be totally suppressed. Depending on particle size and density, this leads 
either to an increase in the critical Reynolds number (possibly by an order of 2-3 times) or to a separation 
of the instability domain into a couple of unconnected subdomains in which the flow is stable with respect to 
two-dimensional disturbances of any wavelength. 

As a practical mat ter  it is important to study the effect of dispersed-phase distribution inhomogeneity 
on the stability of two-phase flows. The solution of this problem is the goal of the present work. The problem 
of hydrodynamical stability is studied on the example of a Poiseuille flow of a strongly rarefied two-phase 
medium. The particles are assumed to be spherical and solid. 

S t a t e m e n t  of  t h e  P r o b l e m .  The equations of the motion of the phases of a strongly rarefied two 
component fluid in dimensionless variables can be written as in [1] (the limits of applicability of this model 
were studied in [2]): 

V �9 V f  = O, OP--2 + V-  (ppVp) = O, 
Ot 

Ot + V f .  V V f  = - V P  + A V f  + (Vp - V f ) ,  (1) 

0Vp 1 Vp) 
Ot + Vp �9 VVp - SRe(VI  - , 

where V I and Vp are the velocity fields of the carrier and dispersed phases, respectively; P is the medium 
pressure; pp is the mass concentration of the dispersed phase; PI = 1 is the density of the carrier medium; 
Re = UoL/u is the Reynolds number;/5"o is the characteristic speed of the flow; L is the characteristic linear 
scale of the flow; t, is the viscosity of the carrier medium; the relaxation time S of the geterogenous medium is 
determined by a precise drag condition, in particular, if the Stoks low is valid, then S = (2/9)(a/L)2(p*p/pf) 
(h and p~ are the particle size and density of its material). 
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The problem of flow stability with respect to infinitesimally small disturbances is posed in a standard 
way. It was shown in [2-4] that the Squire theorem is valid for an arbitrary dispersed-phase distribution; 
therefore we can limit our consideration to the two-dimensional case: (v,) (v) (u,) 

Vp (r , t )  = (y) + vp (r , t)  = U (y) + Up (y)e  i(a~:-~t), (2) 

pp fl  f qo 

P(r ,  t) = p(x) + pl(r,  t) = p(x) + lr(y)e i(e'~:-~`) . 

Here U = (U(y), 0, 0) is the flow velocity profile; o~ and w are the wave number and disturbance frequency; 
and f is the distribution of the dispersed phase particles in the undisturbed flow. The disturbance amplitude 
is assumed to be small: 

vf  << U, vp "(< U, f l << f ,  Px << p. 

In this case the motion of the particles is determined by the motion of the carrier medium: 

up~ = l + i a S R e ( U - c )  u l x -  l + i a S R e ( U - c )  dy uly ' 

whereas system (1) is reduced to the equation [2, 41 

(W - c)A~b - W"~, + @ ( r  f ' )  
ay 

where 

1 
(3) Upy 

1 + i ~ S a e ( U  - c) '~Iy' 

i2~eA2~b, (4) 

U - c d 2 w 
W(y)  U + f J; J 1 + iaSRe(U - c)' A - dy 2 -  c~2; c a" 

is the stream function of the carrier medium (u[~ = ~ t  u f  ~ = - i a r  
Let us consider a dispersed medium flow in a plane channel with solid walls at y = +1 with the 

velocity profile U = 1 - y2 (the transverse coordinate y is normalized by the channel halfwidth L). Two- 
dimentional disturbances in such a flow are subject to the usual nonpenetration and attachment conditions 
at the boundaries: 

~(1) = O, r = O; (5) 

~ ( - 1 )  = 0, r  = 0. (6) 

Since the problem is symmetric with respect to the y = 0 plane its solutions must have either a symmetric 
stream function 

0'(0) = o, r = o, (7) 

or antisymmetric one 

~(0)  = 0,  ~"(0)  = 0. (s) 

In Poiseuille flows of homogenuous fluid only the symmetric mode is unstable. As has been mentioned 
already the flow stability can be reduced by the addition of small particles that are uniformly distributed over 
the flow space. Such stability reduction is caused by an increase in the medium's effective density, which is 
equivalent to a flow-velocity increase, and cannot generate a new unstable mode. With a nonuniform dispersed- 
p'hase distribution, the effective density of the medium becomes variable, and it is necessary to investigate 
both the symmetric disturbances subject to conditions (5) and (7) and antisymmetric ones subject to (5) and 
(8). Nonetheless, a comprehensive study of symmetric mode behavior is of value in its own right. It is clear 
that at sufficiently small particle concentrations the spectrum of the disturbances is close to that of a pure 
homogeneous fluid. For a mode that is stable in a pure fluid to become unstable in a two-phase one, if it is 
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possible at all, a critical particle concentration is necessary. So, a concentration interval always exists in which 
the flow stability is determined by the symmetric mode behavior. 

Within the limits of the present work the problem (4), (5), and (7) was solved numerically using 
methods of orthogonalization and differential sweeping. Testing of the schemes used was performed on a 
problem of linear stability of a Poiseuille flow of a homogeneous fluid [2] and showed good agreement with 
the data of [5]. 

R e s u l t s  of  C a l c u l a t i o n s .  Let the dispersed-phase distribution be of the form 

f(y) = fv(cr)exp(-y2/a 2) ( - 1  ~< y ~< 1), (9) 

where the normalizing factor fv is such that as o" changes the total number of particles in the channel is 
conserved. At the limit c~ ~ oc this distribution transforms into a uniform distribution, whereas at a << 1 
one gets a "thin dust layer" limit. In such a layer the mass particle concentration can be arbitrarily high, but 
the surface density 

1 1 

fs = / f(y)dy = / fY(a)exp(-Y2/~2)dY 
- 1  - I  

is finite. An increase in mass concentration, however, does not mean an increase in the number of particles 
in the system. It is caused only by a decrease in dust-layer volume. Begining from some or, the layer becomes 
arbitrarily thin, and in just this sense the mass concentration is arbitrarily large. 

The choice of a dispersed-phase distribution in the form of (9) is justified for several reasons. First, 
the problem is of interest from the point of view of flow-stability control. Obviously the generation of a more 
or less thin dust layer is most economically and technically feasible. Second, any alternate distribution of 
particles can be represented as a set of thin layers. And, finally, if the dust layer is thin enough, the precise 
form of f(y) becomes unimportant,  and only the surface density fs is of importance. 

In Fig. 1 curves of neutral stability for media with particle distributions given by (9) are shown for 
different values of dust-layer thickness or. Here S = 2.5- 10 -4, fs = 0.1. Curve 6 corresponds to a pure fluid, 
and curve 1 to a two-phase flow with a uniform particle distribution [cr --+ oc in (9)]. Curves 2-5 correspond 
to cr = 2, 1, 0.5, and 0.2. As the dust layer thickness ~ decreases the curves rapidly converge to a limit, which 
differs both from the case of a uniform distribution and from the case of a pure fluid. This limit is practically 
reached already at cr = 0.5, and so the flow stability is weakly affected by the redistribution of particles in 
the central part IY[ < 0.5 of the flow. 

The described character of flows with a particle-number density distribution of the form of (9) remains 
the same for a wide range of parameter fs variation. The maximum stabilizing effect is reached with a uniform 
particle distribution inside the flow (the calculations presented in Fig. 1 were performed for a fixed number 
of particles in the flow space). A decrease in particle surface density will shift the neutral stability curves 
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obtained at the limit of a thin dust layer toward curve 6 in Fig. 1 of pure fluid neutral stability. 
Let us now investigate the behavior of disturbances when the dust layer is shifted with respect to the 

flow axis. Since only symmetric disturbances are considered in the present work, we assume the presence of 
two dust layers located symmetrically with respect to the flow axis at distance ~ from it: 

At ~ = 0, we have an axisymmetric dust layer (9); at cr << ~ < 1, two layers with surface particle density fsl2. 
Figure 2 shows how the flow stability changes with dust-layer displacement from the flow axis toward 

the boundary surfaces. The thickness of each layer is cr = 0.1, the total surface density of the particles is 
fs = 0.01 (the surface density in each layer is fs/2 = 0.005), and the relaxation time is S = 2.5- 10 -4. Curves 
of the neutral stability of a pure fluid 1 and of a uniform dispersed medium 2 ( f  = 0.01, S = 2.5.10 -4) are 
shown for comparison. The flow stability is not significantly affected by particle density redistribution in the 
central part of the flow ~ = 0-0.5 (the curves of neutral stability for ( = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 coincide 
within the accuracy of graphical plotting and are given in Fig. 2 by curve 3). With further shifting of the 
layers toward the boundaries, the stability initially decreases (curve 4 for ~ = 0.72), reaches a minimum at 

= 0.77 (curve 5), and then begins to grow again as the dust layers approach the boundaries (curve 6 for 
= 1 .0 ) .  

Such flow behavior is typical. Variation of the dust layer thicknesses changes the results only 
quantitatively. In Fig. 3, profiles of the critical Reynolds number Rec(4) are given for flows with dust Layers 
(10) of different thicknesses or. The particle density in each layer is fs/2 = 0.005; the relaxation time is 
S = 2.5.10 -4. Curves 1-3 correspond to dust-layer thicknesses ~r = 0.1, 0.05, and 0.02, respectively. It can 
be seen that the maximal stability is reached not when the layer is located immediately near the wall, but 
at some intermediate position ~ --~ 0.95. In addition, one more local maximum exists at ~ ,,~ 0.75. In the 
case of a thick layer, these effects are "smoothed." The described dependence of Rec on 4 is due to a sharp 
change in the disturbance phase velocity, which happens in the vicinity of the critical layer and inside it. 
The dependence of the disturbance phase velocity c on parameter 4 at different values of cr is given in Fig. 4; 
curves 1-3 correspond to a = 0.1, 0.05, and 0.02. 

An important factor which determines flow stability is the dust-layer relaxation time. The dependence 
gee(4) is presented in Fig. 5 for different values of the medium's relaxation time S. Here c~ = 0.05, fs = 0.01. 
Curves 1-5 correspond to relaxation times S = 4.10 -3, l0 -a,  2.5- 10 -4, 10 -4, and 10 -6. It is seen that the 
greatest impact on flow stability is produced by small particles. Since at SRe << 1 the medium behaves as a 
single phase medium with enhanced density, it can be assumed that the main effect of a dust layer on flow 
stability at small S is provided by the local change of medium's effective density in the vicinity of the critical 
layer. Such a medium can be described in the context of single-component hydromechanics; the appropriate 
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equations are (0v ) 
V - V = 0 ,  p - - ~ - + V . V V  = - V P +  A V ,  

where p(g) is the medium's density; V is its velocity field. A standard derivation leads to the stability equation 

1 2 
p[(U - c)AO -- U'%] + p'[(U - c)~b' - U'~] - iJRe A g,, (il) 

which can also be obtained directly from (4) if one puts S = 0, p(g) = 1 + f(y) .  As a result of solution of 
Eq. (11) with boundary conditions (5) and (7), the dependence Rec({) was found for a medium with a variable 
density profile P(9), which coincided with curve 5 in Fig. 5 (S = 10 -6) with graphical accuracy, proving the 
above assumption. As S increases phase "decoupling" takes place, with the result that the effective density 
of the medium in the dust layer decreases, and, as a consequence, its effect on flow stability is reduced. 

As the particle concentration in each layer increases, the character of stability changes. In Fig. 6, 
curves of neutral stability are given for f s  = 0.1, S = 2.5.10 -4, (r = 0.1. As with smaller densities fs ,  
particle redistribution in the central flow area weakly influences flow stability (curve 1 in Fig. 6 corresponds 
to ~ = 0-0.5). However, as the dust layer approaches criticality at relatively small flow velocities (Re < 1000) 
along with the main area of instability (curve 2, which coincides with curve 1 within the accuracy of the 
points plotted) a new instability subdomain appears for the same disturbance mode (curve 2a for ~ = 0.58). 
The sizes of this subdomain increase rapidly (curves 3a and 3 at { = 0.7), and finally it merges with the main 
instability domain (curve 4 for { = 0.75). With further shifting of the dust layer toward the flow boundary 
its stability again increases up to Rec > 400 000 (curve 5 corresponds to { = 0.887, and curve 6 corresponds 
t o  = 1 . 0 ) .  

Analys i s  of  D i s t u r b a n c e  E n e r g y .  The rate of two-phase-medium energy increase is determined by 
the relation 

f~ 

w.here f~ is the flow space. The terms of this expression are 

dE: (o,:: ) 
fl 

a a - 
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Substituting functions (2) and taking into account the smallness of the disturbance amplitude, we obtain 

-  y"s + u .  v , ,s  + a Sv,. + u .  . 
f l  f l  

Using linearized Eqs. (1) and (3) to simplify formula (12), and taking into account that on the fl domain 
boundary the condition v I = 0 must be satisfied, we find 

dE 1 
: -jd s ,v' 1 J d y  f ( v i  - vp) 2, 7-i = (vizviy) (i = f ,p) .  (13) -ii-=-idy,-sv- Sey(vvs)' ( vvs )  Sac 

f l  12 12 f l  

Here rf  and rp are the Reynolds stresses of the carrier and dispersed phases, respectively. 
In a single-phase fluid, the disturbance energy increase is associated with the first two terms of (13). The 

first corresponds to transformation of the main flow energy into disturbance energy and is most significant 
in the vicinity of the critical layer. The second term is quadratic and describes the viscous dissipation of 
disturbance energy near the flow boundary. The third and fourth terms in (13) are associated with the work 
of the interphase force; the third indicates that the particle is involved in the mechanism of disturbance 
interaction with the main flow, whereas the fourth is again of quadratic form and is governed by the viscous 
energy dissipation with mutual  phase motion. 

To analyze this equation in the general case, for arbitrary S and f ,  is not a simple task. We shall 
restrict our analysis of (13) to the special case of SRe << 1. Using the interrelations (3) between the velocity 
fields of the particles vp and carrier fluid v f  (3) it is easy to ascertain that with linear in SRe accuracy we 
have r I = rp, whereas vp - v I = 0. Taking this into account, we find 

i 1 i dEdt - dy (1 + f ) r i U '  - ~ dy ( V v f ) :  (Vvs ) .  (14) 
fl fl 

The last term in this expression is always negative, and the considered flow can be unstable if 

d--t- > 0 or - dy (1 + f )TIU'  > Ree dy (VvI)  : ( V v f ) .  (15) 
fl  fl  

If the particles in the flow are distributed uniformly, then f = const, whereas vf practically coincides with 
the corresponding expression for a homogeneous fluid ri0 [the latter is easy to verify by analyzing Eq. (4), for 
instance]. The value of rf0 in Poiseuille flow differs appreciably from zero only in the vicinity of the critical 
layer. Since in a homogeneous fluid there exists a Reynolds number range for which Poiseuille flow is stable, 
it is clear that the same two-phase fluid flow with a uniform particle distribution and with SRe << 1 must be 
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stable in some Reynolds number  value region as well. Since the first term in expression (14) for a two-phase 
fluid is 1 + f times greater than in a homogeneous fluid, the two-phase flow destabilizes at smaller Reynolds 
numbers than the homogeneous fluid. From (15) follows a rough estimate of the relation between the critical 
Reynolds numbers of a homogeneous fluid Rec0 and of a two-phase one Rec: 

Rec = Rec0/(1 + f ) .  

With a nonuniform particle distribution in the flow, the character of the behavior of the Reynolds 
stresses of the carrier fluid r / c a n  differ considerably from that  of rl0. This can be seen already from analysis 
of the stream function Eq. (4), which for the situation under consideration reduces to (11), with p = l + f .  This 
equation differs from the conventional Orr-Sommerfeld equation by the factor (1 + f )  in the first term on the 
left side and by the presence of the second term. For distribution (10), the function f '  (as well as p') changes 
its sign in the vicinity of the point y = 4- The absolute value of this function is small almost everywhere, and 
the second term in (11) can be neglected, unless 4 is in the vicinity of the critical layer. Inside the critical layer 
the stream function varies drastically and inclusion of this term is necessary. The sign alternation transforms 
it in the vicinity of the critical layer at y > { firstly into an additional (to the viscous one) dissipative force, 
which leads to flow stabilization, as opposed to the homogeneous fluid case, and then into an active force, 
which leads to an increase in Reynolds stresses and, as a consequence, to instability development in precritical 
regimes of homogeneous fluid flow. Such behavior was observed in numerical calculations, the results of which 
were described in the above section. 

The qualitative analysis conducted is valid at SRe << 1; nevertheless, the described mechanisms of 
flow instability development and flow stabilization hold also at other values of the parameter SRe. However, 
at SRe ~> 1 the force of the interphase interaction also becomes important .  Let us prove this for the case 
of sufficiently thin layers, the surface particle concentration of which is comparatively small. In this case, 
distribution (10) can be replaced by 

f (Y)  = l fs[~5(Y - ~) + 6(Y + 4)] = fs6~(y) ( I s  << 1) 

and the parameters of the disturbed flow can be considered close to those of a homogeneous fluid w0, vi0, 
rf0, and E0: 

dE dEo dE1 dE1 (16) 
w = wo + fSwl ,  v f  ---~ VIO --[- f S v f l  , r f  = rio + f sr i1  , dt - d---i- + f s - - ~ -  = f s  dt 

Here the following relation, which is valid for neutral disturbancies of vi0 in a homogeneous fluid, was used 

dEo 
dt 

Substi tut ing functions (16) into Eq. 

dE1 f 2 
d--7 - dyT:1 (y )U' (y )  -- 

1 
J e ,:oV' - ey (Vv:o): (Vv:o)= o. 
f~ f~ 

(13), we obtain 

1 
f ( V v : o )  : - - - 2 . 

12 
( 1 7 )  

The sign of dE1/dt  determines whether there is an increase or decrease of flow stability with particles admixing. 
The two first terms in (17) are associated with the change in the disturbance eigenfunction caused by a change 
of the medium's  effective density. The last two terms in (17) describe the work produced by the interphase 
force. They can be determined by (3) if the disturbance function vf0 of a homogeneous fluid is given. Let us 
combine the terms pairwise according to their meanings: dE1/dt  = ep(~) + e/(4). 

In Fig. 7 the dependences dE1/dt(4) and e/(4) are presented for the cases of coarsely and finely 
dispersed media. It is seen that  for the finely dispersed medium (S = 10 -6) the main contribution to dE1/dt  
(curve 1) comes not from e / ( c u r v e  2), but from ep, that is, the change in the medium's density profile in the 
vicinity of the critical layer is of controlling importance for flow stability. For the coarsely dispersed medium 
the terms e v and e /  are comparable in order of magnitude (curves 3 and 4 for dE1/dt and ei,  respectively, 
for S = 10-2). 
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Conc lus ions .  The calculations which were reviewed in the preceding sections show that the stability 
properties of the Poiseuille flow of a two-phase medium are drastically changed by the addition of particles 
to the flow. These changes depend greatly on whether the particle distribution is uniform or not. If the 
particles are large enough, the degree of their distribution nonuniformity will affect the character of instability 
development much more weakly than in the fine-particle case. It is important to emphasize that the same 
particles can, depending on conditions (profiles of the distribution, density, flow velocity etc.), stabilize as 
well as destabilize the flow. This enables one to use particles for effective control of the development of 
flow instability. In the present work only the behavior of a symmetric mode of disturbances was studied. 
The investigations carried out with the author's participation reveal that under certain conditions and with 
sufficient particle concentration values, at least another [antisymmetric (5) and (8)] disturbance mode is 
destabilized. A detailed description of the changes in the disturbance spectra, however, is beyond the scope 
of the present work. 

The great variety of possible dispersed-phase profiles f (y )  does not permit one to conduct an exhaustive 
investigation of the effect of an arbitrary particle distribution on flow stability. However, as has been pointed 
out already, any dispersed-phase distribution can be considered a superposition of a set of dust layers. 
Therefore a qualitative view of flow stability with other particle-concentration profiles is available based 
on the results of the present work. The change in the structure of the disturbance equations in the case of 
a nonuniform distribution is of principal importance. An additional term appears in the equation, which is 
absent in the case of a uniform particle distribution. This changes considerably the conventional stability 
criteria. Consider, in particular, the inviscid limit of Eq. (4). We assume that with Re ---* cc simultaineously 
SRe ~ 0 (such a situation is quite possible and is realized, for instance, in large scale flows, because Re ~ L. 
whereas S ,~ L-2).  Then an equation for disturbances follows from (11): 

( ; u ' ) '  
- ~ b = O .  (18) 

( u  - c) 

As is known [6], solutions of the Rayleigh equation obtained by integration along the real axis coincide with 
the limiting solutions of the Orr-Sommerfeld equation only in the case of increasing disturbances. It can be 
shown, without resorting to a complicated analysis, that Eq. (18) has the same properties with respect to 
"viscous" Eq. (11). Actually, the solution of the Rayleigh equation in a complex plane is not unique, because 
of the existence of a singular point yc, which is determined by the condition U(yc) = c, where the U is an 
analytical continuation of the velocity profile function into the complex plane. Therefore, in the complex plane 
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two classes of integration paths exist, which differ in the way in which the singular point yc is handled (the 
paths are denoted by (a) and (b) in Fig. 8). The solution of the viscous problem along one of the paths does 
not coincide with the solutions along the other one. The true path is determined by an analysis of the limiting 
behavior of the solution of the Orr-Sommerfeld equation for a negligibly small viscosity (Re --* ee). Such an 
analysis was conducted in [6] and, in particular, came to the already mentioned conclusion: integration along 
the real axis can be used only for increasing disturbances. But,  as is easily seen, the critical points of Eq. (18) 
coincide with those of the Rayleigh equation. Besides, there is a continuous passage to the limit p(y) --* 1 that  
transforms (11) into an Orr-Sommerfeld equation but (18) into a Rayteigh equation. Since the location of the 
critical point yc remains the same, paths (a) and (b) transform into one another. Hence, in the integration of 
(18), the integration path  must  be chosen by the same rules as in integration of the Rayleigh equation. 

Let a growing solution of (18) exist: Imc  > 0. We multiply this equation by the function 0", which is 
the complex conjugate of ~, and substract from the resulting equation its complex conjugate. As a result we 
have C -- C* 

; ( 0 " 0 "  - + p ' ( 0 ' 0 "  - r  - Ig  - cl - - - - - - - q ( p g ' ) ' l r  

It is apparent, that  both sides of this equation are purely imaginary. If one introduces the real quantity 

G = - i /2p(~ '0"  - 0 " r  

the latter equation can be writ ten as 
d Imc  

d y  a - I t / -  cl 
On the boundaries of the domain the condition ~ = 0 is satisfied, with the result that  G must vanish. It 
follows clearly that  the value dG/dy must reverse its sign in the interval between the flow boundaries. Hence, 
somewhere in this interval the condition (pU~) ~ = 0 is satisfied. Thus we obtain a new necessary condition for 
the existence of growing disturbances. This condition is a generalization of the Rayleigh theorem about the 
point of inflection for media with a variable density profile. 

The above reasoning forces one to suppose that the spectra of disturbances in heterogeneous media 
flows can differ qualitatively from those of a homogeneous flow. The authors intend to devote a separate work 
to study these spectra and, in particular, to investigate the behavior of other modes of instability. 
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